Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 39(3): e4714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506395

RESUMO

In this study, the melt quenching approach is used to synthesize a lead borate-strontium-based glass system doped with samarium ions. Modifications in the glass network structure arising from the addition of various concentrations of Sm3+ ions were investigated via Fourier transform infrared (FTIR) spectroscopy. FTIR analysis revealed B-O-B bridges, BO3 , and BO4 units are present. UV-vis-NIR spectroscopic measurement was performed to study the optical absorption spectra. Optical constants such as optical bandgap energies, refractive indices, and other related parameters were evaluated. The lifetime fluorescence decay was measured and ranged between 1.04 and 1.88 ns. The photoluminescence spectra in the range 500-750 nm revealed four transitions from the ground state 6 G5/2 to the excited states 6 H5/2 , 6 H7/2 , 6 H9/2 and 6 H11/2 and J-O theory was utilized to study these optical transitions for Sm3+ ions. Calculations of the oscillator strengths and J-O intensity parameters were performed and the obtained J-O parameters followed the sequence Ω4 > Ω6 > Ω2 . The ratio O/R indicated a high lattice asymmetry around the samarium ions. The values of lifetimes and branching ratios for the fabricated samples emphasized their suitability to be used in laser applications. The current glass samples are good candidates for orange and red emission devices.


Assuntos
Boratos , Tungstênio , Boratos/química , Samário/química , Íons , Vidro/química
2.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832170

RESUMO

Melt quenching technique is used for preparing glasses with chemical formula (70P2O5)-(16 - x)CdO-(14ZnO)-(xEr2O3), (x = 1-6 mol%). These glasses were named Er1, Er2, Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the prepared glasses were examined. Glasses' density was varied from 3.390 ± 0.003 for the Er1 glass sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect (PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases as the molar concentration of Er2O3 in the glasses increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section, FNRC (ΣR) values of the glasses obtained via calculation varied from 0.1045-0.1039 cm-1 for Er1-Er6. Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be applied for radiation shielding and dosimetric media.

3.
Brief Bioinform ; 22(2): 1197-1205, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32793981

RESUMO

Coronavirus Disease 2019 (COVID-19) is a sudden viral contagion that appeared at the end of last year in Wuhan city, the Chinese province of Hubei, China. The fast spread of COVID-19 has led to a dangerous threat to worldwide health. Also in the last two decades, several viral epidemics have been listed like the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002/2003, the influenza H1N1 in 2009 and recently the Middle East respiratory syndrome coronavirus (MERS-CoV) which appeared in Saudi Arabia in 2012. In this research, an automated system is created to differentiate between the COVID-19, SARS-CoV and MERS-CoV epidemics by using their genomic sequences recorded in the NCBI GenBank in order to facilitate the diagnosis process and increase the accuracy of disease detection in less time. The selected database contains 76 genes for each epidemic. Then, some features are extracted like a discrete Fourier transform (DFT), discrete cosine transform (DCT) and the seven moment invariants to two different classifiers. These classifiers are the k-nearest neighbor (KNN) algorithm and the trainable cascade-forward back propagation neural network where they give satisfying results to compare. To evaluate the performance of classifiers, there are some effective parameters calculated. They are accuracy (ACC), F1 score, error rate and Matthews correlation coefficient (MCC) that are 100%, 100%, 0 and 1, respectively, for the KNN algorithm and 98.89%, 98.34%, 0.0111 and 0.9754, respectively, for the cascade-forward network.


Assuntos
COVID-19/diagnóstico , Genoma Viral , SARS-CoV-2/genética , Algoritmos , COVID-19/virologia , Análise de Fourier , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-20696612

RESUMO

UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state.


Assuntos
Raios gama , Vidro/química , Níquel/química , Análise Espectral/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Fosfatos , Espectrofotometria Ultravioleta , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...